Online continual learning via the knowledge invariant and spread-out properties

نویسندگان

چکیده

The goal of continual learning is to provide intelligent agents that are capable continually a sequence tasks using the knowledge obtained from previous while performing well on prior tasks. However, key challenge in this paradigm catastrophic forgetting, namely adapting model new often leads severe performance degradation Current memory-based approaches show their success alleviating forgetting problem by replaying examples past when learned. these methods infeasible transfer structural i.e., similarities or dissimilarities between different instances. Furthermore, bias current and also an urgent should be solved. In work, we propose method, named Online Continual Learning via Knowledge Invariant Spread-out Properties (OCLKISP), which constrain evolution embedding features (KISP). Thus, can further inter-instance due bias. We empirically evaluate our proposed method four popular benchmarks for learning: Split CIFAR 100, SVHN, CUB200 Tiny-Image-Net. experimental results efficacy compared state-of-the-art algorithms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of language complexity and group size on knowledge construction: Implications for online learning

This  study  investigated  the  effect  of  language  complexity  and  group  size  on  knowledge construction in two online debates. Knowledge construction was assessed using Gunawardena et al.’s Interaction Analysis Model (1997). Language complexity was determined by dividing the  number  of  unique  words  by  total  words.  It  refers  to  the  lexical  variation.  The  results showed  that...

متن کامل

Scale-Invariant Unconstrained Online Learning

We consider a variant of online convex optimization in which both the instances (input vectors) and the comparator (weight vector) are unconstrained. We exploit a natural scale invariance symmetry in our unconstrained setting: the predictions of the optimal comparator are invariant under any linear transformation of the instances. Our goal is to design online algorithms which also enjoy this pr...

متن کامل

Invariant Measures for the Continual Cartan Subgroup

We construct and study the one-parameter semigroup of σ-finite measures L θ , θ > 0, on the space of Schwartz distributions that have an infinite-dimensional abelian group of linear symmetries; this group is a continual analog of the classical Cartan subgroup of diagonal positive matrices of the group SL(n, R). The parameter θ is the degree of homogeneity with respect to homotheties of the spac...

متن کامل

Optimal Tuning of Continual Online Exploration in Reinforcement Learning

This paper presents a framework allowing to tune continual exploration in an optimal way. It first quantifies the rate of exploration by defining the degree of exploration of a state as the probability-distribution entropy for choosing an admissible action. Then, the exploration/exploitation tradeoff is stated as a global optimization problem: find the exploration strategy that minimizes the ex...

متن کامل

investigating the effect of motivation and attitude towards learning english, learning style preferences and gender on iranian efl learners proficiency

تحقیق حاضر به منظور بررسی تاثیر انگیزه و نگرش نسبت به یادگیری زبان انگلیسی، ترجیحات سبک یادگیری و جنسیت بر بسندگی فراگیران ایرانی زبان انگلیسی انجام شد. برای این منظور، 154 فراگیر ایرانی زبان انگلیسی در این تحقیق شرکت کردند. سه ابزار جمع آوری داده ها شامل آزمون تعیین سطح بسندگی زبان انگلیسی آکسفورد، پرسشنامه ترجیحات سبک یادگیری براچ و پرسشنامه انگیزه و نگرش نسبت به یادگیری زبان انگلیسی به م...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2023

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2022.119004